Review of Ground Fault Protection Methods for Grounded, Ungrounded, and Compensated Distribution Systems

نویسندگان

  • Jeff Roberts
  • Hector J. Altuve
  • Daqing Hou
چکیده

This paper reviews ground fault protection and detection methods for distribution systems. First, we review and compare medium-voltage distribution-system grounding methods. Next, we describe directional elements suitable to provide ground fault protection in solidlyand lowimpedance grounded distribution systems. We then analyze the behavior of ungrounded systems under ground fault conditions and introduce a new ground directional element for these systems. Then we examine the behavior of compensated systems during ground faults and describe traditional fault detection methods. We conclude by introducing new ground fault detection methods for compensated systems. INTRODUCTION Ground fault current magnitudes depend on the system grounding method. Solidlyand lowimpedance grounded systems may have high levels of ground fault currents. These high levels typically require line tripping to remove the fault from the system. Ground overcurrent and directional overcurrent relays are the typical ground fault protection solution for such systems. However, high-impedance ground fault detection is difficult in multigrounded four-wire systems, in which the relay measures the ground fault current combined with the unbalance current generated by line phasing and configuration and load unbalance. Ungrounded systems have no intentional ground. For a single-line-to-ground fault on these systems, the only path for ground current to flow is through the distributed line-to-ground capacitance of the surrounding system and of the two remaining unfaulted phases of the faulted circuit. In resonant-grounded or compensated distribution networks the system is grounded through a variable impedance reactor connected to the power transformer secondary neutral or the neutral of a grounding bank. This reactor compensates the system phase-to-ground capacitance such that the zero-sequence network becomes a very high impedance path. The reactor, known as the Petersen coil, permits adjustment of the inductance value to preserve the tuning condition of the system for different network topologies. Resonant grounding provides self-extinction of the fault arc in overhead lines for about 80 percent of temporary ground faults [1]. Considering that about 80 percent of ground faults are temporary, we conclude that more than 60 percent of overhead line ground faults clear without breaker tripping. High-impedance grounded systems are grounded through a high-impedance resistor or reactor with an impedance equal to or slightly less than the total system capacitive reactance to ground. The neutral resistor is of such a high value that ground faults on such systems have very similar characteristics to those of resonant-grounded systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Frequency Response method for contact Rails Fault Diagnosing in Ungrounded Electrical Railway System

Abstract General faults in regular electrical railways system could be detect by implementing the specific protection functions such as ground fault or sensitive earth fault. Otherwise, in ungrounded electrical railway systems which using both feeding and return contact rail at the same time, fault detection cannot done with above-mentioned function. Due to recent growth in electrical railway ...

متن کامل

Photovoltaic Ground Fault and Blind Spot Electrical Simulations

Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when groun...

متن کامل

A Novel Ground Fault Non-Directional Selective Protection Method for Ungrounded Distribution Networks

This paper presents a new selective and non-directional protection method to detect ground faults in neutral isolated power systems. The new proposed method is based on the comparison of the rms value of the residual current of all the lines connected to a bus, and it is able to determine the line with ground defect. Additionally, this method can be used for the protection of secondary substati...

متن کامل

A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids

Abstract: This paper proposes a novel protection method for single line-to-ground (SLG) faults in ungrounded low-inertia microgrids. The proposed method includes microgrid interface protection and unit protection. The microgrid interface protection is based on the difference between the zero-sequence voltage angle and the zero-sequence current angle at the microgrid interconnection transformer ...

متن کامل

Current Directional Protection of Series Compensated Line Using Intelligent Classifier

Current inversion condition leads to incorrect operation of current based directional relay in power system with series compensated device. Application of the intelligent system for fault direction classification has been suggested in this paper. A new current directional protection scheme based on intelligent classifier is proposed for the series compensated line. The proposed classifier uses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001